Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties.

Identifieur interne : 001B43 ( Main/Exploration ); précédent : 001B42; suivant : 001B44

Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties.

Auteurs : Van L T. Hoang [Australie] ; David J. Innes [Australie] ; P Nicholas Shaw [Australie] ; Gregory R. Monteith [Australie] ; Michael J. Gidley [Australie] ; Ralf G. Dietzgen [Australie]

Source :

RBID : pubmed:26220670

Descripteurs français

English descriptors

Abstract

BACKGROUND

Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles.

RESULTS

A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties.

CONCLUSIONS

The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango.


DOI: 10.1186/s12864-015-1784-x
PubMed: 26220670
PubMed Central: PMC4518526


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties.</title>
<author>
<name sortKey="Hoang, Van L T" sort="Hoang, Van L T" uniqKey="Hoang V" first="Van L T" last="Hoang">Van L T. Hoang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. v.hoang2@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Pharmacy, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. v.hoang2@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Innes, David J" sort="Innes, David J" uniqKey="Innes D" first="David J" last="Innes">David J. Innes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture and Fisheries, Agri-Science Queensland, Brisbane, Queensland, Australia. David.Innes@daff.qld.gov.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Agriculture and Fisheries, Agri-Science Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shaw, P Nicholas" sort="Shaw, P Nicholas" uniqKey="Shaw P" first="P Nicholas" last="Shaw">P Nicholas Shaw</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. n.shaw@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Pharmacy, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. n.shaw@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Monteith, Gregory R" sort="Monteith, Gregory R" uniqKey="Monteith G" first="Gregory R" last="Monteith">Gregory R. Monteith</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. greg@pharmacy.uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Pharmacy, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gidley, Michael J" sort="Gidley, Michael J" uniqKey="Gidley M" first="Michael J" last="Gidley">Michael J. Gidley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. m.gidley@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dietzgen, Ralf G" sort="Dietzgen, Ralf G" uniqKey="Dietzgen R" first="Ralf G" last="Dietzgen">Ralf G. Dietzgen</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. r.dietzgen@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Pharmacy, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. r.dietzgen@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26220670</idno>
<idno type="pmid">26220670</idno>
<idno type="doi">10.1186/s12864-015-1784-x</idno>
<idno type="pmc">PMC4518526</idno>
<idno type="wicri:Area/Main/Corpus">001B95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B95</idno>
<idno type="wicri:Area/Main/Curation">001B95</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B95</idno>
<idno type="wicri:Area/Main/Exploration">001B95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties.</title>
<author>
<name sortKey="Hoang, Van L T" sort="Hoang, Van L T" uniqKey="Hoang V" first="Van L T" last="Hoang">Van L T. Hoang</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. v.hoang2@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Pharmacy, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. v.hoang2@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Innes, David J" sort="Innes, David J" uniqKey="Innes D" first="David J" last="Innes">David J. Innes</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Agriculture and Fisheries, Agri-Science Queensland, Brisbane, Queensland, Australia. David.Innes@daff.qld.gov.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Agriculture and Fisheries, Agri-Science Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shaw, P Nicholas" sort="Shaw, P Nicholas" uniqKey="Shaw P" first="P Nicholas" last="Shaw">P Nicholas Shaw</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. n.shaw@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Pharmacy, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. n.shaw@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Monteith, Gregory R" sort="Monteith, Gregory R" uniqKey="Monteith G" first="Gregory R" last="Monteith">Gregory R. Monteith</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. greg@pharmacy.uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Pharmacy, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gidley, Michael J" sort="Gidley, Michael J" uniqKey="Gidley M" first="Michael J" last="Gidley">Michael J. Gidley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. m.gidley@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dietzgen, Ralf G" sort="Dietzgen, Ralf G" uniqKey="Dietzgen R" first="Ralf G" last="Dietzgen">Ralf G. Dietzgen</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. r.dietzgen@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Pharmacy, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. r.dietzgen@uq.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland</wicri:regionArea>
<wicri:noRegion>Queensland</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acyltransferases (classification)</term>
<term>Acyltransferases (genetics)</term>
<term>Anacardiaceae (genetics)</term>
<term>Anacardiaceae (metabolism)</term>
<term>Cytochrome P-450 Enzyme System (classification)</term>
<term>Cytochrome P-450 Enzyme System (genetics)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Flavonoids (biosynthesis)</term>
<term>Fruit (genetics)</term>
<term>Fruit (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Mangifera (genetics)</term>
<term>Mangifera (metabolism)</term>
<term>Phenylalanine Ammonia-Lyase (classification)</term>
<term>Phenylalanine Ammonia-Lyase (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Trans-Cinnamate 4-Monooxygenase (classification)</term>
<term>Trans-Cinnamate 4-Monooxygenase (genetics)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acyltransferases (classification)</term>
<term>Acyltransferases (génétique)</term>
<term>Anacardiaceae (génétique)</term>
<term>Anacardiaceae (métabolisme)</term>
<term>Cytochrome P-450 enzyme system (classification)</term>
<term>Cytochrome P-450 enzyme system (génétique)</term>
<term>Flavonoïdes (biosynthèse)</term>
<term>Fruit (génétique)</term>
<term>Fruit (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Mangifera (génétique)</term>
<term>Mangifera (métabolisme)</term>
<term>Phenylalanine ammonia-lyase (classification)</term>
<term>Phenylalanine ammonia-lyase (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Trans-cinnamate 4-monooxygenase (classification)</term>
<term>Trans-cinnamate 4-monooxygenase (génétique)</term>
<term>Transcriptome (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Flavonoids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Acyltransferases</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Phenylalanine Ammonia-Lyase</term>
<term>Trans-Cinnamate 4-Monooxygenase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Acyltransferases</term>
<term>Cytochrome P-450 Enzyme System</term>
<term>Phenylalanine Ammonia-Lyase</term>
<term>Trans-Cinnamate 4-Monooxygenase</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Flavonoïdes</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Acyltransferases</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Phenylalanine ammonia-lyase</term>
<term>Trans-cinnamate 4-monooxygenase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Anacardiaceae</term>
<term>Fruit</term>
<term>Mangifera</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Acyltransferases</term>
<term>Anacardiaceae</term>
<term>Cytochrome P-450 enzyme system</term>
<term>Fruit</term>
<term>Mangifera</term>
<term>Phenylalanine ammonia-lyase</term>
<term>Trans-cinnamate 4-monooxygenase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Anacardiaceae</term>
<term>Fruit</term>
<term>Mangifera</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Anacardiaceae</term>
<term>Fruit</term>
<term>Mangifera</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Expressed Sequence Tags</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Genetic Variation</term>
<term>Phylogeny</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Phylogenèse</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transcriptome</term>
<term>Variation génétique</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26220670</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties.</ArticleTitle>
<Pagination>
<MedlinePgn>561</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-015-1784-x</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316 bp. Variety IW had the highest SNP frequency (one SNP every 258 bp) while KP and NDM had similar frequencies (one SNP every 369 bp and 360 bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hoang</LastName>
<ForeName>Van L T</ForeName>
<Initials>VL</Initials>
<AffiliationInfo>
<Affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. v.hoang2@uq.edu.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. v.hoang2@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Innes</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Agriculture and Fisheries, Agri-Science Queensland, Brisbane, Queensland, Australia. David.Innes@daff.qld.gov.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shaw</LastName>
<ForeName>P Nicholas</ForeName>
<Initials>PN</Initials>
<AffiliationInfo>
<Affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. n.shaw@uq.edu.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. n.shaw@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Monteith</LastName>
<ForeName>Gregory R</ForeName>
<Initials>GR</Initials>
<AffiliationInfo>
<Affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. greg@pharmacy.uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gidley</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. m.gidley@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dietzgen</LastName>
<ForeName>Ralf G</ForeName>
<Initials>RG</Initials>
<AffiliationInfo>
<Affiliation>School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia. r.dietzgen@uq.edu.au.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia. r.dietzgen@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005419">Flavonoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.14.82</RegistryNumber>
<NameOfSubstance UI="C038888">flavonoid 3'-hydroxylase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.14.91</RegistryNumber>
<NameOfSubstance UI="D050564">Trans-Cinnamate 4-Monooxygenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.-</RegistryNumber>
<NameOfSubstance UI="D000217">Acyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.1.74</RegistryNumber>
<NameOfSubstance UI="C020141">flavanone synthetase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.3.1.24</RegistryNumber>
<NameOfSubstance UI="D010650">Phenylalanine Ammonia-Lyase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000217" MajorTopicYN="N">Acyltransferases</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027926" MajorTopicYN="N">Anacardiaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005419" MajorTopicYN="N">Flavonoids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005638" MajorTopicYN="N">Fruit</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031022" MajorTopicYN="N">Mangifera</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010650" MajorTopicYN="N">Phenylalanine Ammonia-Lyase</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050564" MajorTopicYN="N">Trans-Cinnamate 4-Monooxygenase</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>02</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26220670</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-015-1784-x</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-015-1784-x</ArticleId>
<ArticleId IdType="pmc">PMC4518526</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):652-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2008 Nov;92(5):353-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18721872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Apr;63(7):2655-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22268158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2010 Apr;71(5-6):559-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20189205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2000 Dec;52(4):673-751</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11121513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2009 Nov-Dec;100(6):754-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19520763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Res. 2014;13(2):3850-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24938473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 15;28(12):1647-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Funct. 2012 Aug;3(8):828-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1639-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19541911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Jan;18(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11141187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2010 Nov;71(16):1839-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20800857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Jan 1;5(1):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11107335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2013 Nov;72:21-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23473981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2005 Oct 19;53(21):8418; author reply 8419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16218696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2011 Aug;49(8):931-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21676621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Oct;270(1):24-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12938038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Res. 2008 May 20;22(8):672-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18569708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2006 May-Jun;44(5-6):323-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16806954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22363718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Aug;19(4):387-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10504561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Apr;12(2):211-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19186095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Jul 8;234(2):177-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10395891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38724</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22737218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Jun;48(6):426-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19852839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem. 2014 Apr 15;149:253-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24295704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2006 Mar;70(3):632-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16556978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Oct;53(377):2099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12324533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013;13:202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24308601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Food Chem. 2013 Jan 15;136(2):585-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23122101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Apr;15(5):1367-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3375-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21430290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(7):e68960</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23922672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2014 May;85(1-2):193-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24515595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Aug;111(4):1059-1066</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014;15:957</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25373421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 Nov;20(11):1844-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18173847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12929-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10536025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Jul 23;56(14):5905-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18564848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000777</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20019811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2014 Jun 13;105:19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24704857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2014;2014:232969</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25136564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010;61(1):33-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19887502</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Hoang, Van L T" sort="Hoang, Van L T" uniqKey="Hoang V" first="Van L T" last="Hoang">Van L T. Hoang</name>
</noRegion>
<name sortKey="Dietzgen, Ralf G" sort="Dietzgen, Ralf G" uniqKey="Dietzgen R" first="Ralf G" last="Dietzgen">Ralf G. Dietzgen</name>
<name sortKey="Dietzgen, Ralf G" sort="Dietzgen, Ralf G" uniqKey="Dietzgen R" first="Ralf G" last="Dietzgen">Ralf G. Dietzgen</name>
<name sortKey="Gidley, Michael J" sort="Gidley, Michael J" uniqKey="Gidley M" first="Michael J" last="Gidley">Michael J. Gidley</name>
<name sortKey="Hoang, Van L T" sort="Hoang, Van L T" uniqKey="Hoang V" first="Van L T" last="Hoang">Van L T. Hoang</name>
<name sortKey="Innes, David J" sort="Innes, David J" uniqKey="Innes D" first="David J" last="Innes">David J. Innes</name>
<name sortKey="Monteith, Gregory R" sort="Monteith, Gregory R" uniqKey="Monteith G" first="Gregory R" last="Monteith">Gregory R. Monteith</name>
<name sortKey="Shaw, P Nicholas" sort="Shaw, P Nicholas" uniqKey="Shaw P" first="P Nicholas" last="Shaw">P Nicholas Shaw</name>
<name sortKey="Shaw, P Nicholas" sort="Shaw, P Nicholas" uniqKey="Shaw P" first="P Nicholas" last="Shaw">P Nicholas Shaw</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26220670
   |texte=   Sequence diversity and differential expression of major phenylpropanoid-flavonoid biosynthetic genes among three mango varieties.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26220670" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020